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Abstract

We present an algorithm for the layered segmentation ofovidigta in multiple views. The
approach is based on computing the parameters of a laygregsentation of the scene in which
each layer is modelled by its motion, appearance and occypeatere occupancy describes,
probabilistically, the layer’s spatial extent and not siynifs segmentation in a particular view.
The problem is formulated as the MAP estimation of all layargmeters conditioned on those
at the previous time step; i.e. a sqeuential estimationlpmolthat is equivalent to tracking
multiple objects in a given number views. Expectation-Muaisation is used to establish layer
occupancy and visibility (which are represented distijcflosterior probabilities. Evidence
from areas in each view which are described poorly under thdehis used to propose new
layers automatically. Since these potential new layersroficcur at the fringes of images,
the algorithm is able to segment and track these in a single uintil such time as a suitable
candidate match is discovered in the other views. The dlyaris shown to be very effective at
segmenting and tracking non-rigid objects and can copeeaxitieme occlusion.

1 Introduction

The layered representation has become a popular meansre$egging and describing natural
scenes in a compact way. The idea is that a video sequence enagpiesented by a small
number of textured regions and their associated motioris [12

Layers have mainly found use in the representation of moiaogideo sequences, typically
for applications concerned with video coding. In previousrkv[4] we described a layered
representation suitable for multiple view descriptionsgdghamic scenes in which occlusions
occur. Our aim was to extract all relevant parameters fragridigered model including segmen-
tation, appearance, motion and correspondence informaifibie resulting representation has
applications in, for example, video coding, but we were (grdain) motivated by the problem
of novel view synthesis for dynamic scenes in which knowked§occlusion boundaries can
dramatically improve the speed and quality of novel renderews.

In the current paper we reformulate the mathematical espasof the problem to deal
not only with the binocular case, but also with the monocakse, obtaining in the process
an algorithm that is potentiallp-view (though our results to date only show a maximum of
two views). We also make the important extension to our peviwork that new layers are
automatically proposed when the current generative madslddequately to explain the current
images.

Our algorithm is based fundamentally on the observationitharder to deal with occlusion,
it is necessary to represent occupancy — i.e the spatiaheateeach layer. Further, in order to
estimate occupancy, visibility must be considered — i.evilséble subset of occupancy in a



particular view. The representation of both visibility andcupancy and the consideration of
multiple views are the key features of our work, and distisput from the plethora of work
that has gone before, much of which models only visibilityd anost of which considers only a
single viewpoint.

1.1 Reated Work

The most common forms of layered model encountered in teeatitire are designed for the
single view case. Early approaches were mostly bottom-ugngMnd Adelson [12], robustly
compute affine motion parameters over an arbitrary grid tdtpes and proceed to cluster motion
and re-evaluate both the number and extent of the layers) dpproaches by [5] [1], employ a
probabilistic mixture model formulation to compute the rimaxm likelihood layer parameters
by simultaneously computing segmentation and motion.

A particular variant among previous approaches is whetharad occlusion is fully ac-
counted for. The persistent representation of a layer'sipancy in spite of occlusion is key for
tracking and is exploited by Jepsenal. [7], where a strong shape model is employed. Tao
et al. [10] model a layer's shape by a Gaussian spatial prior betgbives more as a segmen-
tation (i.e. visibility) prior rather than an occupancyg@rand thus does not explicitly consider
occlusion.

Like us, Frey and Jojic [8] model occlusion through a layegetherative model. Their
method is designed to determine layers in a set of imagesichvthere is no assumed temporal
ordering. The placement of a layer in an image is modelleddistabution over all possible lo-
cations, quantised to the resolution of the image grid. @dtyh their approach is quite general,
there are two reasons we do not pursue a similar approach (ieire many applications there
are strong temporal constraints available from orderedjgrsequences. The use of these con-
straints produces a more efficient algorithm. (ii) Frey aajicJdemonstrated only translational
changes in layers. Although their framework is not restdcto translation, there is a practical
difficulty in computing the distribution over, say, all siiae degrees of freedom. In contrast by
making a (fairly weak) assumption of temporal continuitg, @an afford to represent alignments
and their associated uncertainties analytically.

Zhou and Tao [13] describe an approach to modelling the rackgl which may occlude
foreground layers. This work is similar to ours in formutatibut does not consider multiple
views and in some respects may be regarded as a special c@setitular, their solution is via
a method of axial iteration in which some parameters are fiedd while others are optimised.
The solution method is therefore inefficient and will notalea local optimum in the single pass
used. Here however, we derive the exact EM algorithm for #rmeegative model and obtain a
much more efficient solution without needing to discrettse $pace.

Most previous approaches compute motion layers for a simgle of a dynamic scene,
while other less prolific work considers structural layefthe work of [2] and [11] consider
two-views of a scene in order to extract 3D layers, where thiesformations between views is
due to structure rather that dynamic object motion. In astirour work considers both motion
and structure.

2 Layered Mode

In this section we describe the layered representation ansider a generative model; it is then
shown how this suggests a solution via the EM-algorithm.



Figure 1: The parameters that describe a layer are occuﬂr(mgpresented by a probabilistic
map), appearancdl (represented by an intensity map), and alignmght(a transformation
relating the coordinate frame of tli layer to thejth image).

2.1 Parameters

Assume the layered model consistsnof 1 depth ordered layers: the background layer and
foreground layers. Note that the ordering of layers is deteed indirectly (via disparity) by
their inter-viewpoint spatial aligment parameters. Eafel can be defined by its occupancy,
appearance and alignment parameters. The first two prepertirrespond to the underlying
object’s shape and colour (the intrinsic parameters), edethe alignment parameters relate
the coordinate frame of the layer to each view (the extripsi@ameters); figure 1 illustrates the
meaning of the layer parameters. The layered model atttimdenoted ak; = (L?,L{, ..., L),
where . o
L{:(OLALCD{) (l)

are the parameters (occupancy, appearance, alignmetigitf layer. Each layer haw align-
ments (one for each view) _ N

CD{:{(Q”} je[l,...,m] (2

2.2 Mode

Conceptually, an image is composed of a number of indepetalegars which, in general, may
overlap and therefore occlude each other. The result istieatalue of an image pixel is
generated by the foremost layer at that point. The compuwsitf layers involves two variables:
which layer is the foremost and occupies a particular paiisilfility), and what value does that
layer generate at that point (appearance). _

More formally, the generative model for an observed imagth@ijth view I is such that
the intensity at pixek is generated according to the realisation of a random viaridéscribed
by the appearance model of the foremost layer at the poirt we assume the existence of
an indicator variable that states which layer is foremostigaility indicator), and further, we
consider it to be a random variable we obtain a mixture moot@htilation. This is described by

n

P (x) = _ZDP(IJ IV (%) = PV (%) =) 3)
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Figure 2: A Bayesian network illustrates the problem of king the layered representatihn
given the observations (currentimag&sand takes the form of a hidden Markov model.

in which the probability of the pixel valué (x) given that thath layer is visible constitutes the
ith layer's appearance model. Here, the observed interssitysumed to be distributed normally
conditioned on the visibility and has mean given by the adjappearance map:

P({ OV () =) ~ N(AL (@) '%), 02) (@)

Interpret the visibilityP(\/tj (x) =) as the probability that théh layer is visible in the
jth view atx. Then the visibility probability of theth layer can be expressed in terms of the
occupancy parameters of all layers

n
POV (%) =) = Ol %) ] 11— Ol ) (5)
k=i+1

that is, the probability that a particular layer is visiblexais given by the probability that it
occupiex and that no closer layer occupias

The solution to mixture model problems typically involvegeanpting toinvert the genera-
tive model given the generated data. If we know which layetisible at each pixel, then our
problem is partitioned inta+ 1 simpler sub-problems which can be solved using ML or MAP
parameter estimation for example. The problem is that weadd&mow the visibilities; they are
hidden.

The EM-algorithm is a method which solves the hidden datalpra by assuming an initial
estimate for the parameters. We can produce initial estisnfiir the parameters from those
obtained at the previous time step.

3 Estimatingthe Layer Parameters

The layer model is illustrated by the network shown in figure/Berel; represents the set of all
layer parameters at timeandl; represents the set of all images at titnd he joint probability
of all nodes in figure 2 can be factored as

t
P(LO) I_IIP(IT“—T)P(LT“-T—I) (6)

which, as a function of the layer parameters at titrie proportional toP(l;|Lt)P(Lt|Li—1).
Therefore, the problem can be expressed as: find the pan@amwdieh maximise the function
F(L),

F(Lt) = InP(It|Lt)+InP(Lt|Lt,1) (7)

3.1 EM algorithm

The Expectation-Maximisation algorithm [6] is applied g section to solve a hidden data
problem. Starting from the original cost functidf(L;), we introduce the hidden visibility



variablesv and a distributiorQ(V) over these variables to give

F(Lt) = |nP(|t|Lt)+|nP(Lt|Lt,1) (8)
= InEP(V,It|Lt)+InP(Lt|Lt,1) (9)

A lower bound is constructed using Jensen’s inequality argthe optimisation of this which
is the EM algorithm.

F(Q,Lt) EQ J(INP(V,1t|Lt) —InQ(V)) +InP(L¢|Lt 1) (10)

It can be shown that equality between the original and loweni holds whe®@(V) = P(V|l, Lt),
i.e when theQ(V) is the posterior visibility distribution. Therefore, bysasning initial estimates
for the parameters we can comp@¢V) (the E-step). Next, we can maximise the lower bound
F(Q,L:) givenQ(V) (the M-step). In summary, usirigto represent the iteration number, we
iterate the following steps until convergence:

E-step:

QW) =PI, L) (12)

M -step:

LY = argmaxy QM (V) InP(V, It |Lt) + InP(L|L;_1) (12)
Lt

Despite appearances, solving equations 11 and 12 is muidr &zen solving equation 7
because, as we will show, the parameters of each layer cavi\mzidor independently.

In the following the dependence on the current layer pararakt is implicit. We assume
that, conditioned on the hidden visibility variables angelaparameters, pixel values are inde-
pendent. The E-step then involves computing the posteisiility distribution over the layer
indexi for each pixel of each viewj denoted byg'l (x) and given by

0 = PM@=illx) (13)
0PI O () =PV (9 =1) (14)

where the prior visibility is given by equation 5.
The M-step involves maximising the functiéi{q, L; )

F(a,Lt) ; 3 () InP(I ()W () = 1)

J=1X
+ ()P (x)) +InP(LIL_) (15)

The final form of the cost function becomes the following, vehigere, the variable x is a position
relative to the coordinate frame of tith layer

Z} > al @) InPd (@) (@) =)

j=1 X
+ d(@xInoj(x) (qu‘ m”X)> In(1—0}(x)

+ InP(®}[®}_y) +INP(O}[O}_3) +INP(AIA ;) (16)

It can be seen that the M-step may be performed by indepegagimising each layer’s
parameters. Further, within each layer occupancy and appea may be optimised indepen-
dently of each other. However, the alignment parameteraatape optimised independently



of the occupancy and appearance parameters. It is themeémessary to perform an E-step
between solving for the alignments and solving for the otftemameters. This approach is a
version of Generalised EM and is also guaranteed to converge

3.2 Computing Alignment

In order to compute the alignment parameters we considecalise function when all other
parameters are fixed. Consider, fitle layer’s alignment with thgth view, the expression to
maximise is

. L i) — 1 (@ x))2
Fa,q) = z_qu(qux)(At(X) le (%))

oo +  ql@xnoix
X |

+ (izlqki(qq”x)> In(1 - Oi(x)) +  InPd'q’,) (17)
k=0

In words, the optimum alignment for théh layer with thejth image is found when (1) the
appearance map agrees with the image data wherevéhttager is visible (first term), (2) the
occupancy map is large wherever itielayer is visible (second term), (3) the occupancy map of
theith layer is small wherever any farther layers are visiblérdtbterm), and (4) the alignment
agrees with the prior motion constraint (fourth term).

The solution is found by using a modified version of the pralgtlr image alignment solu-
tion proposed in [3], the difference here being the additibthe extra term in the cost function
(second term) and the weighting introduced by the posteigibility. The result is a iterated
linear solution for the alignments parameters.

3.3 Computing Occupancy
Now, taking the alignment parameters to be fixed we conshieptcupancy parameters of the
ith layer and the associated cost

F(a,01(x) a’(d"x) 0| (%)

Il
HMB

+ <Z)qkl cn”x)ln(l Oi(x)) + InP(Q{0} ;) (18)

We model the prior occupancy as a beta distribution
P(Ol(x)|0}_1(x)) D O} (1 O})” (19)

where,a = Ol , andf = 1—a. This is for two reasons: occupancy is limited to values
between zero and one, and the other terms in the cost are fortheof the logarithm of a beta
distribution.

Thus we obtain a linear solution for occupancy.

i a-+a m ij m
O fiarp 27 2d@X. Z

This solutionmakes sense since large values of visibility or prior occupancy (numeratend
to increase the occupancy and large values of farther kayésibilities (denominator) tend to
reduce the occupancy.

/(@' (20)
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3.4 Computing Appearance

The appearance is computed by optimising the cost

F(a.A i (g A W@ (A0 A 4()?

(@ > (21)

20; 202

where we have assumed a constant appearance transitiohanddeprior on appearance given
by the normal distribution

P(AL(X)| A1 (X)) ~ N(A_1(X), 0R) (22)

with mean given by the previous appearance and variagceThe variance offers a control
on how much we expect a layers appearance to vary over tinefu{us the case of non-rigid
motion).

We obtain a linear solution for the appearance

g - B T AR + AL o9
- @
e ST i) + 2

Thus, the appearance is updated during the M-step by a veeidiind of the prior appearance
and the currentimages; the blending weights change eaetide and depend on the visibilities
and alignments.

4 Algorithm and | mplementation

At each timet the layer parameters are propagated from those computée atrévious time
according to the mode of the prior distributions. This phoe acts much like a prediction and
serves as the starting point of the EM algorithm. The nexjesta to reconsider the order of the
model, i.e does the model explain the data well and if not Ehitnere be additional layers. We
take quite a simple approach to this which involves congiggrow well the model explains the
data compared to a model which assumes a uniform data lidalihMore precisely, for each
pixel in each view we compute the evidence for the layeredehfsdm the following

P(Le[l{ (%) ;PI‘ IV (x) = DP(V (x) = i)P(Ly) (24)

and the evidence from an alternative and uninformative mbtde

P(M[I{ (x)) = P(I{ (x)IM)P(M) (25)

We set the prior for the layered model a99 and the prior for the alternative a@. By
flagging pixels wheréP(L¢|l{ (x)) < P(M|I{(x)) we obtain a mask for each images of which
pixels are poorly explained under the current model. By IngKor locally dense clusters of
unexplained pixels of a given minimum size a new layer idafiged by setting the occupancy
to 0.8 inside the region initialised and taking the current impgel values in that region as the
appearance.

For layers that appear in two or more views the depth-orddsreasily obtained from the
disparity; a new layer that exists only in one view is giveroainal depth value that is refined
over time. Any layers which move outside the range of all \Weave deleted and new layers
instantiated before solving for the new parameters. Figuhestrates the full algorithm.
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Figure 3: The steps shown are performed as one cycle per fidowever, the Expectation and
Maximisation steps may be iterated; we found that two ordhterations is usually sufficient
for convergence.

The algorithm begins with only one layer, the backgroundicwthas been learnt using
robust statistics on samples of each pixel. As the algoritemates over time new layers are
proposed, and spatial alignments in multiple views establil.

In our implementation the alignment for the background vgagis the identity transforma-
tion (static cameras) but the framework is not restrictethis respect. To cope with pan-tilt-
zoom parameters we could changgto be a four or five degree of freedom 2D homography.
The alignment of all foreground layers is modelled usingdggree of freedom affinities. The
appearance model in our implementation is restricted toahime rather than full colour in-
formation.

5 Reaults

In this section we show results from applying the algoritlonvarious video data. Results are
shown for tracking in one and two views. In the figures the auies drawn over the images
indicate where a layer's occupancy passes through the Gefugnd serve to show the layer's
computed extent.

Figure 4 shows a sequence taken from a single viewpoint iolwfo people are wandering
around and one passes in front of the other causing neardotédsion. Note the non-rigid
motion of the arms and legs relative to the torso. The reslitav this is handled well. In
addition the figure shows the progression of the occupandyagpearance maps of the two
foreground layers.

To demonstrate the algorithm in a more demanding scenagoapplied it to two-views
of a football game in which new players are entering the sderm®th views as time goes by
(figure 5). Although there are more parameters to solve fawimviews than in one, there is
better scope for direct layer measurement because evern dfgalayer is occluded in one view
it may be visible in another. The result is that the appearamz] occupancy can be estimated
even though an object is may be hidden in some views.

Our original motivation for developing motion segmentatand tracking algorithm was for
novel view synthesis. The knowledge of occluding boundaad the temporal propagation
of these, can lead to more efficient and better quality noiels. Given a precomputed lay-
ered segmentation and the corresponding occupancy aradltyishdicator variables, we can
easily generate new views in real-time, using visibilty asaipha-matte, by varying the layer
alignment parameters in a manner consistent with the noeefoint’s epipolar geometry. The
pre-learned background is interpolated using the methdé]ofExamples for the football se-
guence are shown in figure 6.



Figure 4: Single view example: (top) segmentation showamngd occlusion and non-rigid mo-
tion; (bottom) occupancy and appearance maps of the twarfouad layers from the single
view tracking example. It can be seen that in spite of ocoluysoccupancy and appearance

persist.

Figure 5: Two view example: the top row shows extracts frora sequence, while the bottom
row the same time-instants from a different viewpoint. Nof@ automatic creation of new
layers from a single layer (leftmost) to multiple layers) (iew layers being created as players
enter one field of view (eg, yellow box, third column); (iiiprect treatment of occlusion (eg,

cyan box, second column).

Figure 6: Creating novel views: each row shows novel vieved ihterpolate between the two
cameras. (top) frame 40 from a 100 frame sequence; (botiramkf 70 from the same sequence.



6 Conclusion

We have presented a novel layered representation for rneuliews of dynamic scenes, in
which the single view problem is a special case. A MAP sohutar sequentially estimating the
parameters of the model was described with the facility eébsnatically initialising new layers.
The result is a procedure which can track multiple movingeoty over a number of views with a
complete representation of the salient properties. Inqadar, the model maintains a persistent
representation of occupancy in spite of occlusions angjates measurements from each view
according to visibility.

In principle the approach does not require a particulamatignt parameterisation but in our
implementation we assume affine alignment. Thus it admasanl like objects or relatively
short baselines between views. One weakness of our cumghginentation is the restriction
that the background is modelled as a single “special” ldyehind all others. In many scenes,
there is in principle no reason why the background could rmotodelled as as a set of planar
layers itself together with individual alignment paramstehis would then admit the posibilty
of parts of the background (eg the goal posts) occludingdhegiound.
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